In this paper we study a perturbative approach to the problem of quantization of probability distributions in the plane. Motivated by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point of view [10], [12], [15], we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the limit as the number of points tends to infinity, the hexagonal lattice is a strict minimizer of the energy; (2) the gradient flow of the limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis provides a new mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.

Quantization of probability distributions and gradient flows in space dimension 2 / Caglioti, Emanuele; Golse, François; Iacobelli, Mikaela. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 35:6(2018), pp. 1531-1555. [10.1016/j.anihpc.2017.12.003]

Quantization of probability distributions and gradient flows in space dimension 2

Caglioti, Emanuele;
2018

Abstract

In this paper we study a perturbative approach to the problem of quantization of probability distributions in the plane. Motivated by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point of view [10], [12], [15], we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the limit as the number of points tends to infinity, the hexagonal lattice is a strict minimizer of the energy; (2) the gradient flow of the limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis provides a new mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.
2018
gradient flow; parabolic systems of PDEs; quantization of probability distributions; Wasserstein distance; analysis; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
Quantization of probability distributions and gradient flows in space dimension 2 / Caglioti, Emanuele; Golse, François; Iacobelli, Mikaela. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 35:6(2018), pp. 1531-1555. [10.1016/j.anihpc.2017.12.003]
File allegati a questo prodotto
File Dimensione Formato  
Caglioti_Quantization-of-probability_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Contatta l'autore
Caglioti_preprint_Quantization-of-probability_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.02 MB
Formato Unknown
2.02 MB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1085166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact